skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Das, Suprem R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 25, 2025
  2. Abstract Over the past several years, atomically thin two‐dimensional carbides, nitrides, and carbonitrides, otherwise known asMXenes, have been expanded into over fifty material candidates that are experimentally produced, and over one hundred fifty more candidates that have been theoretically predicted. They have demonstrated transformative properties such as metallic‐type electrical conductivities, optical properties such as plasmonics and optical nonlinearity, and key surface properties such as hydrophilicity, and unique surface chemistry. In terms of their applications, they are poised to transform technological areas such as energy storage, electromagnetic shielding, electronics, photonics, optoelectronics, sensing, and bioelectronics. One of the most promising aspects ofMXene'sfuture application in all the above areas of interest, we believe, is reliably developing their flexible and bendable electronics and optoelectronics by printing methods (henceforth, termed asprinted flexible MXetronics). Designing and manipulatingMXeneconductive inks according to the application requirements will therefore be a transformative goal for future printed flexible MXetronics.MXene'scombined property of high electrical conductivity and water‐friendly nature to easily disperse its micro/nano‐flakes in an aqueous medium without any binder paves the way for designing additive‐free highly conductiveMXene ink. However, the chemical and/or structural and hence functional stability of water basedMXeneinks over time is not reliable, opening research avenues for further development of stable and conductiveMXeneinks. Such priorities will enable applications requiring high‐resolution and highly reliable printedMXeneelectronics using state‐of‐the art printing methods. EngineeringMXenestructural and surface functional properties while tuningMXeneink rheology in benign solvents of choice will be a key for ink developments. This review article summarizes the present status and prospects ofMXeneinks and their use in inkjet‐printed (IJP) technology for future flexible and bendableMXetronics. 
    more » « less
  3. Owing to the opaque nature of the laminated structures, traditional high-speed optical camera cannot be used to detect the dynamic process of sub-surface deformation. In this article, we report a study of using high speed X-ray imaging to study the high strain rate deformation in laminated Al structures. We used a Kolsky bar apparatus to apply dynamic compression and a high-speed synchrotron X-ray phase contrast imaging (PCI) setup to conduct the in situ X-ray imaging study. The in situ X-ray imaging captures the shock wave propagation in the laminated structures. After shock compression, we characterized the microstructures by using transmission electron microscopy (TEM), which demonstrates an increase of dislocation density. The micro-pillar compression tests show that the yield strength at 0.2% offset of laminated Al-graphene composite has a significant increase of 67%, from 30 to 50 MPa, compared to laminate Al after shock loading. 
    more » « less
  4. For this experimental study on evaporation of water from graphene, two graphene samples with different thickness and microstructure were used. Figure 1 shows the representative optical and scanning electron microscope (SEM) images of the two samples. Sample 1, shown in Figure 1a-b, is a 3 to 4 atomic layer of continuous graphene sheet grown on copper substrate via chemical vapor deposition (CVD) and was subsequently transferred to a quartz substrate using a wet chemical method reported previously [5]. The graphene thickness is at 1.2 nm to 1.4 nm, as measured by Atomic Force Microscopy. Sample 2, shown in Figure 1c-d, represents an inkjet-printed reduced graphene oxide on silicon and subsequently treated with a direct pulsed laser writing (DPLW) process for surface 3D-nanostructuring. The layer thickness is between 6 µm and 7 µm. 
    more » « less
  5. Solution-phase printing of exfoliated graphene flakes is emerging as a low-cost means to create flexible electronics for numerous applications. The electrical conductivity and electrochemical reactivity of printed graphene has been shown to improve with post-print processing methods such as thermal, photonic, and laser annealing. However, to date no reports have shown the manipulation of surface wettability via post-print processing of printed graphene. Herein, we demonstrate how the energy density of a direct-pulsed laser writing (DPLW) technique can be varied to tune the hydrophobicity and electrical conductivity of the inkjet-printed graphene (IPG). Experimental results demonstrate that the DPLW process can convert the IPG surface from one that is initially hydrophilic (contact angle ∼47.7°) and electrically resistive (sheet resistance ∼21 MΩ □ −1 ) to one that is superhydrophobic (CA ∼157.2°) and electrically conductive (sheet resistance ∼1.1 kΩ □ −1 ). Molecular dynamic (MD) simulations reveal that both the nanoscale graphene flake orientation and surface chemistry of the IPG after DPLW processing induce these changes in surface wettability. Moreover, DPLW can be performed with IPG printed on thermally and chemically sensitive substrates such as flexible paper and polymers. Hence, the developed, flexible IPG electrodes treated with DPLW could be useful for a wide range of applications such as self-cleaning, wearable, or washable electronics. 
    more » « less